US009342323B2

a2z United States Patent (10) Patent No.: US 9,342,323 B2
Glazkov (45) Date of Patent: May 17, 2016

(54) BROWSER-LEVEL BACKGROUND PAGE 2010/0180205 Al* 7/2010 Deshpandeetal. 715/744
2012/0066620 Al* 3/2012 Tengetal. 715/762

FOR PROVIDING MULTIPLE VIEWS 2013/0167110 Al* 6/2013 Grossetal.coovennne 717/105

(75) Inventor:

(73) Assignee:

(*) Notice:

(21) Appl. No.: 13/570,962
(22) Filed: Aug. 9, 2012
(65) Prior Publication Data
US 2014/0047318 Al Feb. 13,2014
(51) Imt.ClL
GO6F 9/00 (2006.01)
GO6F 9/44 (2006.01)
(52) US.CL
CPC i GO6F 9/4443 (2013.01)
(58) Field of Classification Search
CPC e GOGF 9/4443
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
2005/0267725 Al* 12/2005 Reederetal. 703/22
2007/0094604 Al* 4/2007 Sahoo 715/746
2007/0260749 Al* 11/2007 Lahdensivu .. 709/246
2007/0266050 Al* 11/2007 Kaandorp 707/200
2008/0155457 Al* 6/2008 Ittelccoovveveivennene 715/781
2008/0172624 Al 7/2008 Matsutsuka et al.
2009/0158243 Al* 6/2009 Bolarinwaccc.o.c... 717/105
2009/0300060 Al* 12/2009 Beringer et al. . 707/103 R
2009/0328072 Al* 12/2009 Shinetal.c.cccooenene 719/318
2010/0138778 Al* 6/2010 Dewanetal. 715/789

Us)

Dimitri Glazkov, Mountain View, CA

Google Inc., Mountain View, CA (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 741 days.

Application As Wireframe

116

FOREIGN PATENT DOCUMENTS

WO 2014/025467 Al 2/2014
OTHER PUBLICATIONS

International Preliminary Report on Patentability for PCT Patent
Application No. PCT/US2013/047551, mailed on Feb. 19, 2015, 10
pages.

Glazkov, “What the Heck is Shadow DOM”, WebKit, glazkov.com/
2011/01/14/what-the-heck-is-shadow-dom/, Jan. 14, 2011, 12 pages.
“XBL 2.0”, W3C, Working Draft, dev.w3.0rg/2006/xbl2/, May 2,
2012, 44 pages.

“Shadow DOM”, W3C, Editor’s Draft, dves.w3.hg/webcomponents/
raw-file/tip/spec/shadow/index.html, May 3, 2012, 19 pages.
“Model-view-controller”, from Wikipedia, the free encyclopedia,
May 3, 2012, 2 pages.

(Continued)

Primary Examiner — Stephen Hong
Assistant Examiner — Marshon Robinson

(74) Attorney, Agent, or Firm — Brake Hughes Bellermann
LLP

(57) ABSTRACT

A method for implementing web applications includes pro-
jecting, using a processor of a computing device, one element
of' a web page of a web application into a view of the web
page, the view being a visual representation of a model of'the
web page, the model including application data and rules. A
controller mediates input and converts input to commands for
the view or the model. The controller transposes the one
element projected in the view of the web page and another
element using an insertion point that represents a defined
location in a shadow document object model subtree, without
affecting a document object model tree of the web page.

12 Claims, 10 Drawing Sheets

Application As DOM Subtrees

Application Container 110

Navigation
12

View Trigger

147

View Trigger

2118

More Views
120

Chat 31

B

Selected View 122

‘Application’
Container 110A

fro\

View
Trigger1

MTA

Viewt

View2

US 9,342,323 B2

Page 2
(56) References Cited Michaux, “MVC Architecture for 1-20 JavaScript Applications”,
retrieved on Oct. 22, 2013 from http://michaux.ca/articles;mvc-
OTHER PUBLICATIONS archite cture-for-javascript-applications, Feb. 24, 2011, 12 pages.

Search Report and Written Opinion for International Application No.
PCT/US2013/047551, mailed Nov. 20, 2013, 12 pages. * cited by examiner

US 9,342,323 B2

Sheet 1 of 10

May 17, 2016

U.S. Patent

L Old

NJebbu Ziebbu L1obbu |
NMSIA MO ZMIIA Mo LMSIA MO
[0z1 ozl ﬁ g8l Vel asil ViLL
|aued
74N} MO
uoneBiaeN
Yail
YFIT 184D o
111 yo
ZC1 MaIA paloales
02t Btz Tt =TT
eI eueon SMIIA IO | | 106611 main || 10661 moip uonEBIAEN
\ 01T ouiguo) uoieoyddy
9l w\
$99.1gNS NOQJ SY uoieoijddy SWIBHBIIA SY uoneoiddy

U.S. Patent May 17, 2016 Sheet 2 of 10 US 9,342,323 B2

Shadow DOM Subtrees 220

219 Document Tree 210 240\ |
-
Qll 242
o 243
o3
2
5
2
3 244 246 247
° 245
. \
*]
©
R
n

Tree as Rendered

Shadow DOM
Subtree
Shadow Shadow
root child root child

FIG. 2

U.S. Patent May 17, 2016

Document Tree 302

Sheet 3 of 10 US 9,342,323 B2

Shadow DOM subtree

320
\

» 322

Shadow root

Shadow host

&_\lnsertion Point1

Shadow boundary 330

@ Tree as rendered 340

Shadow host child in
__Qlace of the insertion

Shadow host child in
__._place of the insertion
point1

point2

U.S. Patent May 17, 2016 Sheet 4 of 10 US 9,342,323 B2

410

/ Demo x \WR\
- Clx | 21y

L 420
This is first screen /

Hello and welcome!

430

Go to second screen/

FIG. 4A

U.S. Patent May 17, 2016 Sheet 5 of 10 US 9,342,323 B2
410
(" = X |)
/ Demo * \\ R\
«~-> clq Ye| >

EThis is second screen

Goodbye

420

»

430

Go back to first scree/

FIG. 4B

U.S. Patent May 17, 2016 Sheet 6 of 10 US 9,342,323 B2

<IDOCTYPE htmi>
<htmi>
<head>
<title> Views Demo</title>
<link rel="stylesheet” type="text/css" href="views.css">
<script src="views.js"></script>
</head>
<body>
<h1> Views Demo</h1>
<!l-- The "window" attribute picks the window (dialog, main window, etc?) in
which to show the view -->
<view id="main-view" window="main">
<l-- scenes can be nested inside the view ... -->
<scene id="first-screen">
<h1>This is first screen</h1>
<p>Hello and welcomel</p>
Go to second screen
</scene>
</view>
<scene id="second-screen" view="main-view">
<!-- or they can just reference a view -->
<h1>This is second screen</h1>
<p>Goodbye</p>
Go back to first screen
</scene>
</body>
</htmi>

FIG. 5A

U.S. Patent May 17, 2016 Sheet 7 of 10 US 9,342,323 B2

{function() {
window.View = function() {
var root = new WebKitShadowRoot(this);
this._content = root.appendChild(document.createElement('content'));
this._content.select = 'scene first-of-type”;, }
window.View.prototype = Object.create(WebKitShadowRoot.prototype, {
setScene: { value: function{scene)
{ if (scene.id) this._content.select = 'scene#' + scene.id; } } };
function asArray(value) {return [].slice.call{value);}
function morph{etement, func) {
element.__proto__ = func.prototype;
func.call(element);
return efement; }
window.Scene = function() {
var view = document.getElementByld(this.getAttribute('view"));
if {tview) {
if (this.parentElement.tagName == 'VIEW')
view = this.parentElement;
Yelse { view.appendChild(this}), }
this.view = view; }
window.Scene.prototype = Object.create(HTMLUnknownElement.prototype);
function Controlier() {
document.addEventListener(DOMContentLoaded', this._initialize. bind(this));
document.addEventListener('click’, this._onClick.bind(this)); }
Controlier.prototype = { _initialize: function()
{Array{document.querySelectorAli('view")).forEach(function{view) {
morph(view, window.View); });
asArray(document.querySelectorAll{'scene')).forEach(function(scene) {morph(scene, window.Scene); }); b
_onClick: function(evt)
{if (evt.target.tagName 1= A"
retum;
evt.preventDefault();
this.route(evt.target.getAttribute(‘href)); 1.
route: function(urf}
{if (url.indexOf('#') 1= 0)
returmn;
var scene = document.getElemeniByld{url.substring(1));
if (Iscene)
retum;
var view = Scene.view,
if (tview)
return;
view.setScene(scene), Yoy
window.controlier = new Controlier();})();

FIG. 5B

U.S. Patent May 17, 2016 Sheet 8 of 10 US 9,342,323 B2

body {

position:
absolute;

width: Opx;

height: 100%;

overflow:
hidden;

margin: 0;

left: -1000px;

view {
position:
absolute;
top: 0;
left: 1000px;
width: 800px;
height: 600px;

FIG. 5C

U.S. Patent May 17, 2016 Sheet 9 of 10 US 9,342,323 B2

(o))
(]
o

10 Providing an HTML document including a list of models

620 Creating a shadow document object model subtree in the body of the HTML
document, the shadow document object model subtree including one or more
insertion points

1622 the one or more insertion points each include a defined location in the I
Ishadow document object model subtree !

630 Specifying, by a web application, which modet in the list of models to display
in a view of a web page, using matching criteria of the one or more insertion
points

l

640 Rendering, in a web browser, the web page, including replacing a content of
a shadow host of the web page with the shadow document object model subtree

US 9,342,323 B2

Sheet 10 of 10

May 17, 2016

U.S. Patent

89L gy, 994 gz vil

ononanannannnn

0LL
|
204

4/ 004

X
91/

US 9,342,323 B2

1
BROWSER-LEVEL BACKGROUND PAGE
FOR PROVIDING MULTIPLE VIEWS

TECHNICAL FIELD

This description generally relates to a model-view-control-
ler framework.

BACKGROUND

Generally, web applications today attempt to follow a
model-view-controller (MVC) design pattern for user inter-
faces. The MVC design pattern divides an application into
three areas of responsibility: (a) the Model: the domain
objects or data structures that represent the application’s
state; (b) the View, which observes the state and generates
output to the users; and (c) the Controller, which translates
user input into operations on the model. One problem that
web applications commonly run into is that a document
object model (DOM) tree that represents the web application
is uniform and does not provide any encapsulation abstrac-
tions. This leads to a struggle to maintain logical separation of
primitive data types (such as Model and View).

One workaround to the MVC design pattern has been pro-
viding alternative means of operation by the user interface
developer. This workaround, however, resulted in a vast set of
user interface-specific APIs. Accordingly, there exists a need
for systems and methods to address the shortfalls of present
technology and to provide other new and innovative features.

SUMMARY

According to one general aspect, a method for implement-
ing web applications may include projecting, using a proces-
sor of a computing device, one element of a web page of a web
application into a view of the web page, the view being a
visual representation of a model of the web page, the model
including application data and rules. A controller may medi-
ate input and converts input to commands for the view or the
model. The controller may transpose the one element pro-
jected in the view of the web page and another element using
an insertion point that represents a defined location in a
shadow document object model subtree, without affecting a
document object model tree of the web page.

According to another general aspect, a system may include
a memory and a processor operably coupled to the memory
and configured to execute code to provide an HTML docu-
ment including a list of models, wherein each model in the list
is a child of a body of the HTML document, create a shadow
document object model subtree in the body of the HTML
document, the shadow document object model subtree
including one or more insertion points, and specify which
model in the list of models to display in a view of a web page,
using matching criteria of the one or more insertion points.

According to yet another general aspect, a non-transitory
computer readable medium may contain executable code that
causes a computing device to project, using a processor of the
computing device, one element of a web page into a view of
the web page, and transpose, using the processor, the one
element projected in the view of the web page and another
element using an insertion point that represents a defined
location in a shadow document object model subtree, without
notifying a browser-level background page. The browser-
level background page may be a script file that lacks a user
interface of its own and acts as a container for all views of a
web application, including the view of the web page. Every

10

30

40

45

50

55

2

window created by the web application may show a different
view of the browser-level background page.

The details of one or more implementations are set forth in
the accompanying drawings and the description below. Other
features will be apparent from the description and drawings,
and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an example block diagram of a web application
framework.

FIG. 2 is an example block diagram of a shadow document
object model framework.

FIG. 3 is an example block diagram of another shadow
document object model framework.

FIG. 4A is an example of a user interface for a web appli-
cation, in accordance with techniques described here.

FIG. 4B is an example of another user interface for a web
application, in accordance with techniques described here.

FIGS. 5A, 5B, and 5C include examples of code for the
web application of FIGS. 4A and 4B.

FIG. 6 is a flow diagram illustrating example operations of
the system of FIGS. 1-5.

FIG. 7 is a block diagram showing example or representa-
tive computing devices and associated elements that may be
used to implement systems and methods in accordance with
FIGS. 1-6.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

A document object model (DOM) is a cross-platform and
language-independent convention for representing and inter-
acting with objects in HTML, XHTML, and XML docu-
ments. As used herein, a “document” refers to the DOM’s
underlying document. A “node” refers to any DOM object
that participates in a tree. A DOM “tree” refers to any tree
composed of DOM objects. Objects in a DOM tree may be
addressed and manipulated by using methods on the objects.
A “DOM structure” refers to a DOM tree or fragment of a
DOM tree.

Web applications may follow a model-view-controller
(MVCQ) design pattern for user interfaces that divides an
application into three areas of responsibility: (a) the Model:
the domain objects or data structures that represent the appli-
cation’s state; (b) the View, which observes the state and
generates output to the users; and (c¢) the Controller, which
translates user input into operations on the model. One issue
the web applications commonly run into is that the DOM tree
that represents the web application is uniform and does not
provide any encapsulation abstractions. This leads to a
struggle to maintain logical separation of primitive data types
(such as Model and View).

Using implementations of a “shadow DOM” (such as
insertion points and their matching criteria, described in more
detail with respect to FIGS. 1-7), it is possible to provide
better separation of concerns between the View and Model
primitive data types. With shadow DOM, an HTML docu-
ment consists of a list of Models, and each Model is a child of
the document’s body. A shadow DOM subtree is created on
the body of the document. This subtree represents the View. In
this subtree, one or more insertion points are used as openings
in the View, through which the Model bits show through, and
matching criteria of the insertion points are used by the Con-

US 9,342,323 B2

3

troller to specify which Model to show in a View. The match-
ing criteria may be represented by a “select” attribute on a
<content> HTML element.

When the Controller (e.g., web application) modifies this
attribute value, the matching criteria changes, which in turn
triggers a change of what is being rendered in place of this
<content> HTML element. A developer of a web application
can designate DOM elements in the document as Views and
change the matching criteria to match any of these DOM
elements to make them appear in place of the <content>
HTML element, thereby providing a clean separation
between the content of the View and how its selection is
controlled. The Model bits are never changed or informed in
any way by the Controller (or View), even while the View is
changed. Thus, user interfaces of web applications, and com-
ponents of the user interfaces, may be manipulated, modified,
and enhanced, without requiring changes to the basic code of
the document markup of the web application Model.

FIG. 1 is an example block diagram of a web application
framework. In this context, a “web application” may be con-
figured to execute a single task or multiple tasks for a user. In
such an implementation, the web application may be config-
ured to be executed or interpreted by a web browser. This is
compared with the native applications that include machine
executable code and are configured to be executed directly by
a processor or via the operating system of the client device,
whereas, a web application may be incapable of execution or
display without the aid of the web browser. Thus, web appli-
cations can be run inside a browser with a dedicated user
interface, and typically provide functionality and an experi-
ence that is more rich and interactive than a standalone web-
site but are less cumbersome and monolithic than a desktop
application. Examples of web applications include games,
photo editors, and video players that are run inside the
browser.

Web application developers often encounter the need to
provide encapsulation of a DOM structure. Despite being part
of one document tree, there may be many functional frag-
ments of DOM (or DOM subtrees), as well as assumptions
about these fragments operating independently. This type of
encapsulation is referred to as “functional encapsulation,” as
opposed to “trust encapsulation,” which deals with limiting
information flow based on trust and ensuring security of data
and state within an application. Functional encapsulation
establishes functional boundaries in a document tree. A func-
tional boundary (or “boundary”) is a delineation of functional
concerns between two loosely coupled units of functionality.

A web application user interface may be composed of
several user interface elements (or “widgets™), each repre-
senting a DOM subtree. In cases where a widget is tasked with
hosting other widgets, the widget may need to understand
where its DOM subtree ends and another widget’s DOM
subtree begins.

This need for observing the functional boundaries in a
document tree is even larger when a widget is operated
on—added, moved, or removed in the document tree—by an
outside actor, such as the web application that consumes these
widgets. Unless a widget consumer knows exactly how a
widget’s DOM structure is designed, it is impossible for the
consumer to reasonably operate on the widget.

As shown in the implementation depicted in FIG. 1, an
example application container 110 may include a “naviga-
tion” widget 112, a “chat” widget 114, a “view trigger 1”
widget 116, a “view trigger 2” widget 118, a “more views”
widget 120, and a “selected view” widget 122.

When the web application is modeled as DOM subtrees, as
shown in FIG. 1, application container node 110A may

10

15

20

25

30

35

40

45

50

55

60

65

4

include, as its child subtree, a node chat 114 A, which in turn
includes, as its children nodes view panel 116A and naviga-
tion 112A. View panel 116 A may include as its children a
view trigger 1 117A, its view 117B, view trigger 2 118A, its
view 118B, and so on, up to any number of view triggers,
illustrated by view trigger N 120A, and its viewN, 120B.

FIG. 2 is an example block diagram of a shadow document
object model (DOM) framework. As shown in FIG. 2, a
document tree 210 may include a shadow host 212, and one or
more child nodes 213, 214, 215, 216, 217, and 218, as
examples. Document tree 210 could include any number of
child nodes. Shadow DOM subtrees 220 may be created, for
example by a developer of the web application that developed
document tree 210.

A “shadow DOM?” structure allows multiple shadow DOM
subtrees 220 (in addition to the document tree 210) to be
composed into one larger tree when rendered (for example, by
a renderer process of a browser, as described in more detail
below). The existence of multiple shadow DOM subtrees 220
is enabled by letting any element in the document tree 210
host one or more additional DOM subtrees (such as shadow
DOM subtrees 220). These shadow DOM subtrees 220 may
be governed by a set of rules that establish encapsulation
boundaries while retaining standard DOM composability
semantics.

The encapsulation boundaries between shadow DOM sub-
trees 220 are referred to as shadow boundaries 230. The
elements that host shadow DOM subtrees are called shadow
hosts 212, and the root nodes of the shadow DOM subtrees are
called shadow roots 240. The shadow roots 240 may have one
or more child nodes, such as nodes 242, 243, 244, 245, 246,
and 247, for example.

A web browser that implements the web applications
described in FIGS. 1 and 2 may, in some implementations,
operate in a multi-process architecture, such that a single
browser process manages all tabs, windows, and “chrome” of
the web browser (e.g., user interface such as search bar, icons,
area outside of a web page of the web browser). The browser
process may create many separate renderer processes (also
called “renderers”), which may each be responsible for ren-
dering web pages. The renderer processes may contain all the
complex logic for handling HTML, JavaScript, CSS, images,
and so on. Each renderer process is run in a sandbox, which
means it has almost no direct access to a computing device’s
disk, network, or display. All interactions with web applica-
tions, including user input events and screen painting, may go
through the browser process. This lets the browser process
monitor the renderers for suspicious activity, killing them if it
suspects an exploit has occurred. The browser process may
also create one separate process for each type of plug-in that
is in use, such as FLASH. These processes may only contain
the plug-ins themselves, along with some code to let them
interact with the browser and renderers. Once a web browser
has created its browser process, it may, in some implementa-
tions, also create one renderer process for each instance of a
web site a user visits. This approach aims to keep pages from
different web sites isolated from each other. Other types of
browsers with renderers may operate using a single process
architecture.

When rendered, for example by a renderer of a web
browser, the shadow DOM subtree 220 may take the place of
the shadow host’s 212 content. Thus, when rendered, shadow
host 212 content (represented by node 212A shown in FIG. 2)
includes children 242A, 243A, 244A, 245A, 246A, and
247 A, which represent the shadow DOM subtree 220 content.
Thus, when rendered, the document tree 210 may include the
content form one or more shadow DOM subtrees 220, thus

US 9,342,323 B2

5

allowing a web application to expose parts of a View and
switch to expose other parts of a web page. This allows a
developer of the web application to avoid re-coding up a
whole web application or web page and avoid the complexity
of managing the web page using the MVC design pattern.

FIG. 3 is an example block diagram of another shadow
document object model framework. To enable composition of
shadow host’s children and the shadow DOM subtree, a set of
“insertion points” 326 and 329 may be utilized. An “insertion
point” refers to a defined location in the shadow DOM subtree
220, to which the shadow host’s children are transposed when
rendered.

As shown in FIG. 3, a Document Tree 302 may include a
shadow host 304, and child nodes 306, 308, 310, 312, 314,
and 316. Shadown DOM 220 may include shadow root 322,
child 324, and insertion pointl 236. Child 324 may also have
child nodes 328 and insertion point2 329. When the tree is
rendered 340, the shadow host 304 A may include child 306 A,
which in turn may have child nodes 310A and 312A. Node
312 may be the shadow host child in place of the insertion
point2 329. Shadow host 304A may also include a shadow
host child 308A in place of insertion pointl 326, which may
include as child nodes 314A and 316A. As discussed above,
the insertion points 326 and 329 are defined location in the
shadow DOM subtree 220, to which the shadow host’s chil-
dren (e.g., 306, 308, etc.) are transposed when rendered.

To maintain the lower-boundary encapsulation, the distri-
bution of child nodes of the shadow host among the insertion
points in the associated shadow DOM subtree include various
traits. For example, the distribution does not affect the state of
the document DOM tree or shadow DOM subtrees. Each
insertion point participates in distribution by providing a
matching criteria for the child nodes. The matching criteria
determines whether a given node could be distributed to a
given insertion point. The distribution is a result of executing
a stable algorithm. The distribution itself does not change the
variables affecting the distribution. The distribution reoccurs
whenever any variable affecting it is changed

The distribution algorithm may produce an outcome that is
equivalent of the outcome of processing these steps: Input:
TREE, which is a shadow DOM subtree; POOL, which is a
list of DOM nodes. Output: The nodes in POOL are distrib-
uted among insertion points in TREE. Repeat for each active
insertion point in TREE, in tree order:

Let POINT be the current insertion point

Repeat for each node in POOL:

Let NODE be the current node

If the NODE matches POINT’s matching criteria:

Distribute the NODE to POINT

Remove NODE from the POOL

Otherwise, continue to repeat

Continue to repeat

Matching Insertion Points

The matching criteria for an insertion point is defined as a
set of selector fragments. Each selector fragment is a frag-
ment in the selector (shadow-host)>(fragment), where
(shadow-host) is a selector that uniquely identifies the
shadow host, and (fragment) is the selector fragment.

Matching Host and Children, Distributed to Insertion
Points

Two kinds of selectors, declared in shadow DOM subtrees
match elements outside of the tree in which they are declared:
(1) A :host pseudoclass, which matches the shadow host of a
shadow DOM subtree; and (2) A select reference combinator,
which matches the nodes, currently distributed to an insertion
point. The :host pseudoclass represents the shadow host of a
shadow DOM subtree. If the contextual reference element set

10

15

20

25

30

35

40

45

50

55

60

65

6

is empty or includes elements outside of a shadow DOM
subtree, :host matches northing. Reference combinators
match the children of a shadow host, distributed to the inser-
tion points within a shadow DOM subtree. To match, all of
these conditions apply: The combinator value is select; the
first compound selector of the combinator matches an inser-
tion point; and the second compound selector matches an
element, distributed to this insertion point.

For example, .some-insertion-point/select/div.special will
match all div elements that have class attribute set to special
and have been distributed to an insertion point that has a class
attribute set to some-insertion-point.

A shadow host may host more than one shadow DOM
subtree. In such cases, the subtrees are stacked in the order
they were added to the host, starting with the subtree added
most recently. This set of trees is called a tree stack. The more
recently added subtree is called the younger tree, and the less
recently added subtree is called the older tree. The most
recently added subtree is called the youngest tree.

To facilitate composing multiple shadow subtrees of the
same host, a special kind of insertion point is defined. The
shadow insertion point designates a place in the shadow
DOM subtree, where an older tree is inserted.

Comparatively, a shadow DOM subtree can be seen as
somewhere between just a DOM subtree in a document and a
document fragment. Because it is rendered, a shadow DOM
subtree aims to retain the traits of a typical DOM subtree in a
document. At the same time, it is an encapsulation abstrac-
tion, so it has to avoid affecting the document DOM tree.
Thus, the HTML elements behave as specified in the shadow
DOM subtrees, with a few exceptions.

Shadow DOM Example

As an example, a developer is asked to turn a simple list of
links into a News Widget, which has links organized into two
categories: breaking news and just news. The current docu-
ment markup for the stories may look like this:

<ul class="stories™>
A story
Another story
<li class="breaking’>Also a
story
Yet another story
Awesome story
<li class="breaking”>Horrible
story

<ful>

To organize the stories, the developer decides to use
shadow DOM. Doing so will allow Bob to keep the document
markup uncluttered, and harnessing the power of insertion
point makes sorting stories by class name a very simple task.
The developer mocks up the following shadow DOM subtree,
to be hosted by the ul element:

<div class=“breaking”>

<content select=".breaking”></content> <!-- insertion point
for breaking news -->
<ful>
</div>
<div class="other”>

<content></content> <!-- insertion point for the rest of the news -->
<ful>
</div>

US 9,342,323 B2

7

The developer then styles the new widget according to
comps from the designer by adding this to the shadow DOM
subtree mockup:

<style scoped>
div.breaking {
color: Red;
font-size: 20px;
border: 1px dashed Purple;
div.other {
padding: 2px 0 0 0;
border: 1px solid Cyan;

¥
</style>

The developer converts the mockup to code:

function createStoryGroup(className, content Selector)
{

var group = document.createElement(‘div’);

group.className = className;

// Empty string in select attribute or absence thereof work the same,
so no need for special handling.

group.innerHTML = ‘<content select="“ +

contentSelector + **></content>’;

return group;

)

function createStyle()

var style = document.createElement(‘style’);
style.scoped = true;
style.textContent = ‘div.breaking { color: Red;font-size: 20px;
border: 1px dashed Purple; }” +
‘div.other { padding: 2px 0 0 0; border: 1px solid Cyan; }*;
return style;

function makeShadowSubtree(storyList)

{
var root = new ShadowRoot(storyList);
root.appendChild(createStyle());
root.appendChild(createStoryGroup(‘breaking’, *.breaking’));
root.appendChild(createStoryGroup(‘other’,));

document.addEventListener(‘DOMContentLoaded’, function() {
[].forEach.call(document.querySelectorAll(‘ul.stories’),
makeShadowSubtree);

s

FIG. 4A is an example of a user interface for a web appli-
cation, in accordance with techniques described here. User
interface 410 may be a user interface for a portion of a web
application (e.g., a web page displayed in a web browser) that
utilizes a browser-level background page and shadow DOM
architecture, described above with respect to FIGS. 1-3. User
interface 410 may include various content elements, such as
text element 420, which may include text such as “This is first
screen” and “Hello and welcome!”. User interface 410 may
also include a link element 430, such as “Go to second
screen.” As described above with respect to FIGS. 1-3, when
the controller, in this case a web application, modifies an
attribute value for a content element, the matching criteria
changes, which in turn triggers a change of what is being
rendered in place of the content element (such as elements
420 or 430). A developer of a web application then can des-
ignate DOM elements (such as elements 420 and 430) in the
document as Views and change the matching criteria to match
any of these DOM elements to make them appear in place of
the content element(s), for example as described below with
respect to FIG. 5.

FIG. 4B is another example of a user interface for a web
application, in accordance with techniques described here.

10

15

20

25

30

35

40

45

50

55

60

65

8

User interface 410 may be programmed using the same DOM
for the web application described with respect to FIG. 4A,
with modifications to the view of the user interface 410. Such
modification to the view may be done without notifying or
modifying the browser-level background page associated
with the web application, as described above with respect to
FIGS. 1-3.

As shown in FIG. 4B, user interface 410 may still include
text element 420, which may now show a different set of text
from that depicted in FIG. 4A, such as “This is second screen”
and “Goodbye”. User interface 510 may also include the link
element 430, which may now display a different selectable
link, i.e., “Go back to first screen.” In the example shown in
FIG. 4B, a developer of the web application that displays user
interface 410 has designated DOM elements 420 and 430 in
the document as views and has changed the matching criteria
to match the DOM elements, to make the new content (i.e.,
text and links) appear in place of the content for the same
content elements 420 and 430 shown in FIG. 4A.

FIGS. 5A, 5B, and 5C include examples of code for the
web application of FIGS. 4A and 4B. The code for the
example web application discussed with respect to FIGS. 4A
and 4B may include an index. HTML file, a views.js JAVAS-
CRIPT file, and a views.css CSS file. The HTML file may
contain code such as that shown in FIG. 5A. The views.js file
may include code such as that shown in FIG. 5B. The
views.css file may contain the code shown in FIG. 5C.

FIG. 6 is a flow diagram illustrating example operations of
the system of FIGS. 1-5. The process of FIG. 6 may be
performed at least in part by a web application executed by
processor of a computing device. Examples of processors and
computing devices that may be used to execute web applica-
tions are described in more detail below with respect to FIG.
7. As shown in FIG. 6, process 600 includes providing an
HTML document including a list of models (610). Each
model in the list may be a child of a body of the HTML
document (612). The process 600 includes creating a shadow
document object model subtree in the body of the HTML
document, the shadow DOM including one or more insertion
points (620). The one or more insertion points may each
include a defined location in the shadow DOM subtree (622).
The process 600 may include specifying, by a web applica-
tion, which model in the list of models to display in a view of
a web page, using matching criteria of the one or more inser-
tion points (630). The process 600 may include rendering, in
a web browser, the web page, including replace a content of a
shadow host of the web page with the shadow document
object model subtree (640). In some implementations, the
rendering may include transposing any children of a shadow
host to the defined location(s) (642).

FIG. 7 is a block diagram showing example or representa-
tive computing devices and associated elements that may be
used to implement systems and methods in accordance with
FIGS. 1-6. Computing device 700 is intended to represent
various forms of digital computers, such as laptops, desktops,
workstations, personal digital assistants, servers, blade serv-
ers, mainframes, and other appropriate computers. Comput-
ing device 750 is intended to represent various forms of
mobile devices, such as personal digital assistants, cellular
telephones, smart phones, and other similar computing
devices. The components shown here, their connections and
relationships, and their functions, are meant to be exemplary
only, and are not meant to limit implementations of the inven-
tions described and/or claimed in this document.

Computing device 700 includes a processor 702, memory
704, a storage device 706, a high-speed interface 708 con-
necting to memory 704 and high-speed expansion ports 710,

US 9,342,323 B2

9

and a low speed interface 712 connecting to low speed bus
714 and storage device 706. Each of the components 702,
704,706,708, 710, and 712, are interconnected using various
busses, and may be mounted on a common motherboard or in
other manners as appropriate. The processor 702 can process
instructions for execution within the computing device 700,
including instructions stored in the memory 704 or on the
storage device 706 to display graphical information for a GUI
on an external input/output device, such as display 716
coupled to high speed interface 708. In other implementa-
tions, multiple processors and/or multiple buses may be used,
as appropriate, along with multiple memories and types of
memory. Also, multiple computing devices 700 may be con-
nected, with each device providing portions of the necessary
operations (e.g., as a server bank, a group of blade servers, or
a multi-processor system).

The memory 704 stores information within the computing
device 700. In one implementation, the memory 704 is a
volatile memory unit or units. In another implementation, the
memory 704 is a non-volatile memory unit or units. The
memory 704 may also be another form of computer-readable
medium, such as a magnetic or optical disk.

The storage device 706 is capable of providing mass stor-
age for the computing device 700. In one implementation, the
storage device 706 may be or contain a computer-readable
medium, such as a floppy disk device, a hard disk device, an
optical disk device, or a tape device, a flash memory or other
similar solid state memory device, or an array of devices,
including devices in a storage area network or other configu-
rations. A computer program product can be tangibly embod-
ied in an information carrier. The computer program product
may also contain instructions that, when executed, perform
one or more methods, such as those described above. The
information carrier is a computer- or machine-readable
medium, such as the memory 704, the storage device 706, or
memory on processor 702.

The high speed controller 708 manages bandwidth-inten-
sive operations for the computing device 700, while the low
speed controller 712 manages lower bandwidth-intensive
operations. Such allocation of functions is exemplary only. In
one implementation, the high-speed controller 708 is coupled
to memory 704, display 716 (e.g., through a graphics proces-
sor or accelerator), and to high-speed expansion ports 710,
which may accept various expansion cards (not shown). In the
implementation, low-speed controller 712 is coupled to stor-
age device 706 and low-speed expansion port 714. The low-
speed expansion port, which may include various communi-
cation ports (e.g., USB) may be coupled to one or more
input/output devices, such as a keyboard, a pointing device, a
scanner, or a networking device such as a switch or router,
e.g., through a network adapter.

The computing device 700 may be implemented in a num-
ber of different forms, as shown in the figure. For example, it
may be implemented as a standard server 720, or multiple
times in a group of such servers. It may also be implemented
as part of a rack server system 724. In addition, it may be
implemented in a personal computer such as a laptop com-
puter 722. Alternatively, components from computing device
700 may be combined with other components in a mobile
device (not shown), such as device 750. Each of such devices
may contain one or more of computing device 700, 750, and
an entire system may be made up of multiple computing
devices 700, 750 communicating with each other.

Computing device 750 includes a processor 752, memory
764, an input/output device such as a display 754, a commu-
nication interface 766, and a transceiver 768, among other
components. The device 750 may also be provided with a

20

40

45

10

storage device, such as a microdrive or other device, to pro-
vide additional storage. Each of the components 750, 752,
764, 754, 766, and 768, are interconnected using various
buses, and several of the components may be mounted on a
common motherboard or in other manners as appropriate.

The processor 752 can execute instructions within the com-
puting device 750, including instructions stored in the
memory 764. The processor may be implemented as a chipset
of chips that include separate and multiple analog and digital
processors. The processor may provide, for example, for
coordination of the other components of the device 750, such
as control of user interfaces, applications run by device 750,
and wireless communication by device 750.

Processor 752 may communicate with a user through con-
trol interface 758 and display interface 756 coupled to a
display 754. The display 754 may be, for example, a TFT
LCD (Thin-Film-Transistor Liquid Crystal Display) or an
OLED (Organic Light Emitting Diode) display, or other
appropriate display technology. The display interface 756
may comprise appropriate circuitry for driving the display
754 to present graphical and other information to a user. The
control interface 758 may receive commands from a user and
convert them for submission to the processor 752. In addition,
an external interface 762 may be provided in communication
with processor 752, so as to enable near area communication
of'device 750 with other devices. External interface 762 may
provide, for example, for wired communication in some
implementations, or for wireless communication in other
implementations, and multiple interfaces may also be used.

The memory 764 stores information within the computing
device 750. The memory 764 can be implemented as one or
more of a computer-readable medium or media, a volatile
memory unit or units, or a non-volatile memory unit or units.
Expansion memory 774 may also be provided and connected
to device 750 through expansion interface 772, which may
include, for example, a SIMM (Single In LLine Memory Mod-
ule) card interface. Such expansion memory 774 may provide
extra storage space for device 750, or may also store applica-
tions or other information for device 750. Specifically, expan-
sion memory 774 may include instructions to carry out or
supplement the processes described above, and may include
secure information also. Thus, for example, expansion
memory 774 may be provided as a security module for device
750, and may be programmed with instructions that permit
secure use of device 750. In addition, secure applications may
be provided via the SIMM cards, along with additional infor-
mation, such as placing identifying information on the SIMM
card in a non-hackable manner.

The memory may include, for example, flash memory and/
or NVRAM memory, as discussed below. In one implemen-
tation, a computer program product is tangibly embodied in
an information carrier. The computer program product con-
tains instructions that, when executed, perform one or more
methods, such as those described above. The information
carrier is a computer- or machine-readable medium, such as
the memory 764, expansion memory 774, or memory on
processor 752, which may be received, for example, over
transceiver 768 or external interface 762.

Device 750 may communicate wirelessly through commu-
nication interface 766, which may include digital signal pro-
cessing circuitry where necessary. Communication interface
766 may provide for communications under various modes or
protocols, such as GSM voice calls, SMS, EMS, or MMS
messaging, CDMA, TDMA, PDC, WCDMA, CDMA2000,
or GPRS, among others. Such communication may occur, for
example, through radio-frequency transceiver 768. In addi-
tion, short-range communication may occur, such as using a

US 9,342,323 B2

11

BLUETOOTH, WiFi, or other such transceiver (not shown).
In addition, GPS (Global Positioning System) receiver mod-
ule 770 may provide additional navigation- and location-
related wireless data to device 750, which may be used as
appropriate by applications running on device 750.

Device 750 may also communicate audibly using audio
codec 760, which may receive spoken information from a
user and convert it to usable digital information. Audio codec
760 may likewise generate audible sound for a user, such as
through a speaker, e.g., in ahandset of device 750. Such sound
may include sound from voice telephone calls, may include
recorded sound (e.g., voice messages, music files, etc.) and
may also include sound generated by applications operating
on device 750.

The computing device 750 may be implemented in a num-
ber of different forms, as shown in the figure. For example, it
may be implemented as a cellular telephone 780. It may also
be implemented as part of a smart phone 782, personal digital
assistant, or other similar mobile device.

Various implementations of the systems and techniques
described here can be realized in digital electronic circuitry,
integrated circuitry, specially designed ASICs (application
specific integrated circuits), computer hardware, firmware,
software, and/or combinations thereof. These various imple-
mentations can include implementation in one or more com-
puter programs that are executable and/or interpretable on a
programmable system including at least one programmable
processor, which may be special or general purpose, coupled
to receive data and instructions from, and to transmit data and
instructions to, a storage system, at least one input device, and
at least one output device.

These computer programs (also known as programs, soft-
ware, software applications or code) include machine instruc-
tions for a programmable processor, and can be implemented
in a high-level procedural and/or object-oriented program-
ming language, and/or in assembly/machine language. As
used herein, the terms “machine-readable medium” and
“computer-readable medium” refer to any computer program
product, apparatus and/or device (e.g., magnetic discs, optical
disks, memory, Programmable Logic Devices (PLDs)) used
to provide machine instructions and/or data to a program-
mable processor, including a machine-readable medium that
receives machine instructions as a machine-readable signal.
The term “machine-readable signal” refers to any signal used
to provide machine instructions and/or data to a program-
mable processor.

To provide for interaction with a user, the systems and
techniques described here can be implemented on a computer
having a display device (e.g., a CRT (cathode ray tube) or
LCD (liquid crystal display) monitor for displaying informa-
tion to the user and a keyboard and a pointing device (e.g., a
mouse or a trackball) by which the user can provide input to
the computer. Other kinds of devices can be used to provide
for interaction with a user as well; for example, feedback
provided to the user can be any form of sensory feedback
(e.g., visual feedback, auditory feedback, or tactile feed-
back); and input from the user can be received in any form,
including acoustic, speech, or tactile input.

The systems and techniques described here can be imple-
mented in a computing system that includes a back end com-
ponent (e.g., as a data server), or that includes a middleware
component (e.g., an application server), or that includes a
front end component (e.g., a client computer having a graphi-
cal user interface or a Web browser through which a user can
interact with an implementation of the systems and tech-
niques described here), or any combination of such back end,
middleware, or front end components. The components of the

10

15

20

25

30

35

40

45

50

55

65

12

system can be interconnected by any form or medium of
digital data communication (e.g., a communication network).
Examples of communication networks include a local area
network (“LAN”), a wide area network (“WAN”), and the
Internet.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.

A number of implementations have been described. Nev-
ertheless, it will be understood that various modifications
may be made to the implementations described herein.

In addition, the logic flows depicted in the figures do not
require the particular order shown, or sequential order, to
achieve desirable results. In addition, other steps may be
provided, or steps may be eliminated, from the described
flows, and other components may be added to, or removed
from, the described systems. Accordingly, other implemen-
tations are within the scope of the following claims.

What is claimed is:

1. A method for implementing web applications, compris-
ing:

projecting, using a processor of a computing device, one

element of a web page of a web application into a view
of the web page, the view being a visual representation
of a model of the web page, the model including appli-
cation data and rules, wherein the web application is
associated with a browser-level background page that
lacks a user interface of its own and that acts as a con-
tainer for all views of the web application, including the
view of the web page, and wherein every window cre-
ated by the web application shows a different view ofthe
browser-level background page;

using a controller to mediate input and convert user input to

the web application into commands for the view or the
model; and

transposing, by the controller, the one element projected in

the view of the web page and another element using an
insertion point that represents a defined location in a
shadow document object model subtree, without affect-
ing a document object model tree of the web page.

2. The method of claim 1, wherein the browser-level back-
ground page is unaffected by any currently displayed view.

3. The method of claim 1, wherein the browser-level back-
ground page includes an HTML document.

4. The method of claim 1, wherein the one element and the
another element are HTML content elements.

5. The method of claim 1, wherein matching criteria are
provided by the insertion point for its child nodes to specify
whether a given node could be distributed to a given insertion
point.

6. The method of claim 1, wherein the shadow document
object model subtree is hosted by an element in the document
model tree of the web page.

7. A computing system comprising:

a memory storing executable instructions; and

a processor operably coupled to the memory and config-

ured to execute the instructions to:

project one element of a web page of a web application into

a view of the web page, the view being a visual repre-
sentation of a model of the web page, the model includ-
ing application data and rules, wherein the web applica-
tion is associated with a browser-level background page
that lacks a user interface of its own and that acts as a
container for all views of the web application, including

US 9,342,323 B2

13

the view of the web page, and wherein every window
created by the web application shows a different view of
the browser-level background page;

use a controller to mediate input and convert user input to

the web application into commands for the view or the
model; and

transpose, by the controller, the one element projected in

the view of the web page and another element using an
insertion point that represents a defined location in a
shadow document object model subtree, without affect-
ing a document object model tree of the web page.

8. The computing system of 7, wherein the browser-level
background page is unaffected by any currently displayed
view.

9. The computing system of 7, wherein the browser-level
background page includes an HTML document.

10. The computing system of 7, wherein the one element
and the another element are HTML content elements.

11. The computing system of 7, wherein matching criteria
are provided by the insertion point for its child nodes to
specify whether a given node could be distributed to a given
insertion point.

12. The computing system of 7, wherein the shadow docu-
ment object model subtree is hosted by an element in the
document model tree of the web page.

#* #* #* #* #*

25

14

